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Abstract The ubiquitin–proteasome pathway plays a pivotal
role in the regulation of cellular protein processing and deg-
radation. Proteasome inhibitors (PIs) have enormous potential
to treat multiple myeloma, solid tumors, parasites, inflamma-
tion, and immune diseases, which is spurring the development
of new types of PIs with enhanced efficacy, fewer side effects,
and reduced drug resistance. Nevertheless, virtual screening
for covalent PIs has rarely been reported because calculating
the covalent binding energy is a challenging task. The aim of
this study was to discover new covalent inhibitors of the 20S
proteasome. The structures of PIs were manually divided into
two parts: a noncovalent binding part resulting from virtual
screening, and an epoxyketone group that was pre-selected as
a covalent binding part. The SPECS database was screened by
noncovalent docking and a pharmacophore model built with
the 20S proteasome. After validating the covalent conjuga-
tion, 88 hits with epoxyketone were covalently docked into
the 20S proteasome to analyze the intermolecular interactions.
Four compounds were selected after multiple filtration and
validations. Molecular dynamics simulations were performed
to check the stability of the noncovalent and covalent docked
ligand–enzyme complexes and investigate the interaction pat-
terns of the screened inhibitors. Finally, two compounds with

novel aromatic backbones, reasonable interactions, and stable
covalent binding modes were retained. These compounds can
serve as potential hits for further biological evaluation.
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Introduction

The ubiquitin–proteasome pathway (UPP) is the main quality
control system for protein degradation [1]. Proteasome inhib-
itors (PIs) accelerate protein misfolding and induce apoptosis
in cells, especially malignant plasma cells [2] due to their
production of antibodies [3]. The first PI to be launched
commercially, bortezomib (BTZ), was approved in May
2003 by the FDA to treat multiple myeloma (MM) [4] and
mantle cell lymphoma [5]. While BTZ is still being investi-
gated as a treatment for various hematological malignancies
and solid tumors [6], some adverse neurologic and cardiovas-
cular effects of BTZ have been reported [7]. In June 2012,
carfilzomib (CFZ), a novel second-generation PI, was ap-
proved for the treatment of MM [8]. CFZ shows superior
selectivity and improved adverse effect profiles, forming sta-
ble and irreversible adducts exclusively with the proteasome
but not with other proteases [9, 10]. However, CFZ resistance
in cell lines, likely caused by p-glycoprotein (Pgp) upregula-
tion and multi-drug-resistance-related efflux pumps, has been
observed [11]. In addition to being used to treat various blood
tumors, PIs have been proposed as a treatment for solid tumors
[12], parasites [13], inflammation, and immune diseases [14].
There is therefore strong interest in developing new types of
PIs with enhanced efficacy, fewer side effects, and reduced
drug resistance.
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In UPP, proteolysis takes place in the 26S proteasome,
which is composed of a 20S core particle and two 19S regu-
latory particles [15]. At the proteolytic site, the 20S protea-
some shows three different types of catalytic activity at three
distinct subunits: the β5 subunit (chymotrypsin-like), the β2
subunit (trypsin-like), and the β1 subunit (caspase-like) [16].
Among these types of catalytic activity, chymotrypsin-like
activity has been shown to correspond to the rate-limiting step
[17]. Therefore, the β5 subunit of the 20S proteasome has
become the primary target for proteasome inhibition to treat
various cancers. Recently, a variety of PIs have been designed,
synthesized, and biologically evaluated. Most of these PIs are
covalent inhibitors with good cell viability that selectively
target the β5 subunit by forming a covalent bond with the
residue Thr1 [18], while noncovalent compounds such as PI-
083 normally show low activities (IC50 > 1 μM) [19]. Thus,
the study reported in the present paper, we searched for
covalent PIs that target the β5 subunit of the 20S
proteasome.

The design of covalent PIs requires careful optimization of
both the noncovalent binding affinity and the covalent reactive
warhead [20]. At present, virtual screening for covalent inhib-
itors of the 20S proteasome has rarely been reported since it is
difficult to calculate the covalent binding energy. Furthermore,
the covalent binding parts of PIs such as boronate and
epoxyketone are not commonly included in silicon screening.
Thus, it is quite a challenge to identify covalent PIs through
virtual screening for hits with these two kinds of covalent
binding parts. As shown in Fig. 1, we divided the molecule
into two parts: a covalent binding part which was selected
beforehand and a noncovalent binding part which was obtain-
ed by virtual screening. The epoxyketone group was selected
as the covalent binding part due to the formation of stable and
irreversible adducts of this group with the residue Thr1 and
because peptide epoxyketones have thus far been found to be
the most selective and potent PIs [18]. The geometries of the
hits were first screened using Libdock [21] to ensure that the
hits could enter the pocket of the receptor. Figure 2c shows the
process of building the pharmacophore model of the
noncovalent binding part for further screening. In the next
step, the covalent binding part was attached at the marked
position for covalent docking to investigate its binding mode.
In order to validate the covalent binding, the distance between
the carbonyl group of the epoxyketone and the hydroxyl
oxygen of the residue Thr1 was monitored by performing
molecular dynamics (MD) simulations of the noncovalent
docking complexes. Based on Soliman’s research, MD simu-
lations for covalent docking complexes were performed to
demonstrate the stable interaction patterns of the screened
inhibitors [22]. Finally, two hits with novel backbones
(Table 1), reasonable interactions, and stable binding modes
(Figs. 10, 11) were found and will be validated by synthesis
and biological evaluation.

Materials and methods

Pharmacophore model generation

Mouse constitutive 20S proteasome with the epoxyketone
inhibitor PR-957 (PDB code: 3UNB) was applied to generate
the pharmacophore model, as the human proteasome is iden-
tical to the murine one in the area of the binding pocket [23].
The software LigandScout 3.03 [24] was used to detect crucial
interactions and then to automatically create an advanced
pharmacophore model.

To obtain the features of the noncovalent binding part for
virtual screening, we deleted the features of the covalent
binding part. Meanwhile, the nitrogen of the morpholine
group (shown as the blue rays in Fig. 2a) and the hydrophobic
site nearby are not common features of most PIs [15] (such as
BTZ and CFZ), and were also deleted manually. The resulting
model used for virtual screening contained two hydrogen-
bond acceptors (HBA), two hydrogen-bond donors (HBD),
one hydrophobic group, and several excluded volumes
(Fig. 2c). The pivotal interactions of this model (Fig. 2d) were
the basic noncovalent hydrogen-bond interactions of
epoxyketones [23]. The processed model was then saved in
Catalyst Hypoedit Script format, which was later edited using
the Hypoedit tool to enable usage in Discovery Studio 3.0
[25]. The pharmacophore model was validated with three
known ligands and evaluated using ROC analysis (see
sections SM-1 and SM-2 in the “Electronic supplementary
material,” ESM).

Virtual screening

A schematic summary of the overall procedure is presented in
Fig. 3. The LibDock protocol was used for crude screening of
the SPECS database (371,557 compounds) [26]. A sphere
10 Å in radius and centered on the centroid of the ligand in
the 20S proteasome (3UNB) was defined, while the default
parameters of other parameters were retained.

Further screening was conducted using the pharmacophore
model of the noncovalent binding part. The optimal confor-
mation of each compound in the database was obtained with
the “flexible” fitting method, the “FAST” conformation gen-
eration method, and the “best mapping only” option in the
Ligand Pharmacophore Mapping protocol. After
pharmacophore screening, compounds were ranked according
to their fit values, and the threshold value (fit value >2.5) used
for filtering was set based on the results of ROC analysis.

Covalent binding part attachment

Due to the restrictions of the software, it is difficult to take
covalent binding parts into consideration when processing the
pharmacophore model. One way of circumventing this
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problem is to create the covalent feature by defining a series of
electrophilic fragments manually [27, 28]. However, if the
epoxyketone group is defined as a new feature, only a few
epoxyketones (362 in the Zinc [29] database) are available,
and thus no novel backbones can be screened. In this study,
features of the covalent binding part were deleted and later
appended with the epoxyketone group after screening to
search for epoxyketones with novel backbones.

Compounds with fit values of >2.5 were selected to ana-
lyze the pharmacophore model complex derived from
pharmacophore screening. The complex of PR957 (Fig. 4a)
was validated when the epoxyketone group could be
appended near the hydrogen-bond acceptor (HBA) feature
and the hydrophobic feature. A methylene group was needed
between these two features, as this allowed the epoxyketone
group to be attached in the right direction without incurring
any conflicts. As shown in Fig. 4b (where the excluded
volume is hidden to improve visualization), the ring-opening
form of the α,β-epoxyketone group was attached to the meth-
ylene group close to the HBA feature.

The candidate molecules were selected based on the fol-
lowing four criteria. (1) A methylene group exists between the
HBA feature and the hydrophobic feature, which ensures that
the epoxyketone group points in the correct direction towards
residue Thr1. (2) Hydrogens of the methylene group should
point in the opposite direction to the pharmacophore features.
(3) There is no conflict between themolecules and the excluded
volume. (4) The attachment operation should retain the original
chirality of PR957 and cause no conflict between the molecules
and the attached fragment. For compounds with the same

scaffold, only the compound with the highest fit value was
retained. Compounds that met the criteria were attached to the
epoxyketone group for subsequent covalent docking studies.

Covalent docking

GOLD version 5.0 [30] was used to implement covalent
docking studies with the same protein–ligand complex
(3UNB) as described by Siwei Zhang et al. [31]. The genetic
algorithm (GA) method was adopted by GOLD for conforma-
tional analysis and docking evaluation. The default GA settings
of GOLD were used: population size=100; selection pressure=
1.1; operations=100,000; islands=5; niche size=2; migration=
10; mutation=95; crossover=95. The centroid of the co-
crystallized ligand was regarded as the docking cavity. The
carbonyl group of the epoxyketone (Fig. 1, part b) was set as
the link atom that binds to the hydroxyl oxygen of Thr 1 (Fig. 1c)
in the covalent option. In order to identify potential leads,
different binding poses were ranked using the Goldscore func-
tion and the interactions were validated to select reasonable hits.
The covalent docking was evaluated by docking PR957 into the
same protein using GOLD (see section SM-3 in the ESM).

Molecular dynamics simulations

Molecular dynamics simulations for noncovalent docking
complexes

The noncovalent binding model is a key component of inves-
tigations into the binding affinities between covalent PIs and

Fig. 1a–d Mechanism leading to the formation of the morpholine adduct between CFZ and the residue Thr1. a Noncovalent binding part of CFZ. b
Covalent binding part of CFZ. c Residue Thr1. d Morpholine adduct
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the β5 subunit. Predicting the noncovalent binding modes of
covalent PIs can aid the development of potent covalent PIs
[32]. When the carbonyl group is close enough to the hydrox-
yl oxygen, it can be covalently bonded through a nucleophilic
reaction (Fig. 1). The distance between the carbonyl group of
the epoxyketone and the hydroxyl of the residue Thr1 was
monitored throughout the MD simulations. The correspond-
ing atomic distances in CFZ and PR957 served as references.

The initial structures were acquired from noncovalent
docking experiments by Glide’s standard precision (SP) meth-
od [33]. MD calculations were carried out using the Desmond
software [34] and the OPLS-2005 force field. TIP3P
(transferable intermolecular potential 3-point) water [35] was
added in a orthorhombic box (size 75Å × 69Å × 81Å), which
ensured that the entire surface of each complex was covered

by the solvent. The systems were then neutralized by adding
Cl− ions, and salt (0.15 mol/L NaCl) was also added to
construct the solvent environment. The resulting system
contained approximately 37,510 atoms.

A series of predefined minimizations and MDs were exe-
cuted to relax the system before the production simulation
using the default relaxation protocol in Desmond. The relaxed
system was simulated for 10 ns with a time step of 2 fs in the
RESPA (REversible reference System Propagator Algorithm)
integrator option. The NPT ensemble was performed with the
Nosé–Hoover thermostat method and the Martyna–Tobias–
Klein barostat method to keep the system at 300 K and a
pressure of 1.01325 bar. The cutoff radius was set to 10 Å for
short-range forces and the particle-mesh Ewald (PME) meth-
od was adopted to calculate long-range forces. The SHAKE

Fig. 2a–d Process of generating the pharmacophore model for screening
the noncovalent binding part. a LigandScout pharmacophore model built
from the 20S proteasome–PR957 complex (3UNB). b 2D interactions of
PR957 in the ligand-binding pocket. c Processed model built from the

noncovalent binding interactions. d Basic noncovalent hydrogen-bond
interactions of PR957 in the ligand-binding pocket. Red arrows HBA,
green arrow HBD, yellow spheres hydrophobic sites, blue rays positive
ionizable area, gray spheres excluded volumes
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Table 1 Structures of the final four hits with epoxyketone

Distancea The average distance between carbonyl group of epoxyketone and the hydroxyl of Thr1 from MD simuatons.

Δdistance
b the difference between the maximum and the minimum distances.

ADME propertiesc : Calculated using QikProp (QikProp, version 3.1).

Starsd Number of property or descriptor values that fall outside the 95 % range of similar values for known drugs.

HumanOralAbsorptione : Predicted qualitative human oral absorption: 1, 2, or 3 for low, medium, or high.
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algorithm was used to restrict all covalent bonds involving
hydrogen atoms [36]. Energies were recorded every 1.2 ps for
Desmond simulation quality analysis and trajectories were
collected every 4.8 ps for Desmond simulation event analysis.
The RMSDs of the complexes were calculated throughout the
simulations, with the first frame used as reference.

Molecular dynamics simulations for covalent docking
complexes

MD simulations for covalent docking complexes were carried
out in order to check the stability of the docked ligand–
enzyme complexes and to provide insight into the binding
affinities and interaction patterns of the screened inhibitors.

The initial structures were acquired from the covalent
docking experiments by GOLD. The method used to dock
covalently bound ligands in GOLD was to force the link atom

in the ligand to fit onto the link atom in the protein instead of
covalent bonding [30]. Thus, a slight modification was uti-
lized for MD simulations of covalent docking complexes [37].
The inhibitors were linked via a covalent bond between the
hydroxyl oxygen of Thr1 and the carbon atom of the inhibitor
while removing a redundant link atom from the structure.
During this operation, the positions of the atoms remained
unchanged. The ligand topologies of both noncovalent com-
plexes (ligands only) and covalent complexes (ligands with
Thr1), including atom types and partial charges, are summa-
rized in section SM-6 of the ESM. The modified structures
were used to build MD systems and run MD simulations
utilizing the same procedure as that described in “Molecular
dynamics simulations for noncovalent docking complexes.”

Results and discussion

Hit compound analysis

By using complementary docking-based and pharmacophore-
based screening, we searched the SPECS database via a linear
virtual screening strategy (Fig. 3). After noncovalent docking
screening , 25 ,988 compounds were f i l t e red by
pharmacophore-based screening. 2167 compounds meeting
the requirement (fit value >2.5) were examined with their
pharmacophore model complexes to check whether the
epoxyketone group could be appended in place. Only 88
compounds passed this screen, and these compounds were
covalently docked into the active site of the 20S proteasome.
Four compounds with reasonable interactions were finally
chosen for MD simulations and ADME investigations
(Table 1). Compounds 2 and 3 exhibited stable interactions,
and compound 2 exhibited good drug-like characteristics ac-
cording to ADME predictions.

Specs Database

(371557)

Epoxyketone

attachment

(88)

Interaction

validation

(4)

High-throughput docking

(LibDock)

Structure-based

Pharmacophore search

(DS 3.0)

Covalent conjugation

validation

Covalent docking

(GOLD 5.0)

2 Hits

MD simulations

(Desmond )

LibDock

(25988)

Fitvalue>2.5

(2167)

Fig. 3 Flowchart of the linear virtual screening procedure (the number of
hits is shown in parentheses)

Fig. 4 a PR957 without epoxyketone mapped to the pharmacophore model. b PR957 remapped to the pharmacophore model after attaching the ring-
opening form of the α,β-epoxyketone group. For simplicity, the excluded volume is not shown
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Pharmacophore mapping

The four hits without epoxyketone were mapped to the
pharmacophore model to conveniently examine the spatial
structure (Fig. 5). In compound 1, the naphthyl group oc-
cupies the hydrophobic feature. The carbonyl group and the
oxygen of the ether serve as two HBA features, while two
amino groups serve as two HBD features. In compound 2, the
hydrophobic feature is occupied by the phenyl group. The
triazole group serves as an HBA feature and an HBD feature,
and the sulfur atom maps the HBA feature. In compound 3,
the phenyl group also occupies the hydrophobic feature, and
other features mimic the patterns of compound 1. The features
of compound 4 are similar to those of compound 3, except for
one HBA feature. Comparing the mapping results with those

of PR957 (Fig. 4b), hit performance can be ranked as follows:
compound 2, compound 3, compound 4, and compound 1.

Covalent docking

Covalent docking was performed to visualize the favorable
interactions between the four hits and the active site of the 20S
proteasome. The best docking poses of the four hits were
analyzed by monitoring crucial residues. In the binding mode
of compound 1, two acid amide groups form four hydrogen
bonds with the residues Gly47, Ala49, and Thr21, respectively.
A hydrogen-bond interaction is also observed between the
terminal oxygen and the carbonyl group of the residue
Asp125 (Fig. 6a). This binding mode favors all hydrogen
bonds between the co-crystallized ligand (PR957) and the

Fig. 5a–d Four hits without epoxyketone were mapped to the
pharmacophore model. a Compound 1. b Compound 2. c Compound 3.
d Compound 4. In the diagrams, the excluded volume is replaced with

protein residues to improve visualization. The hydrogen through which
the epoxyketone group is attached is labeled and is colored purple
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active pocket of the β5 subunit in 3UNB (see Fig. S3a in the
ESM), as well as that of compound 2 (Fig. 6c). The binding
mode of compound 3 is special in that no hydrogen bonds are
formed with residue Thr21 (Fig. 6c). Unlike other hits, the
phenyl group of compound 4 does not occupy the hydropho-
bic pocket below residue Thr1, and no hydrogen bond is
observed with residue Asp125 (Fig. 6d), which is known to
be a significant residue in inhibitory activities [38].

Molecular dynamics results

Molecular dynamics simulations for noncovalent docking
complexes

MD simulations of noncovalent docking complexes were
performed to detect whether covalent bonds can form between

the four hits and the residue Thr1. The atomic distance be-
tween the carbonyl group of the epoxyketone and the hydrox-
yl oxygen of the residue Thr1 was monitored during MD
simulations. The corresponding atomic distances in CFZ and
PR957 were used as references because the two compounds
are both active 20S PIs.

Throughout the 10-ns MD simulations, the RMSD values
for all backbones and compounds remained within the limits
of 5 Å and 3 Å, respectively, and all RMSD variations were
stable after 2.5 ns of simulation. All of the variations in the
total potential energy were less than 900 kcal mol-1 (see
Figs. S4–S7 in the ESM). When the carbonyl group is close
enough to the hydroxyl oxygen, a covalent bond can form. For
CFZ, the atomic distance was around 3.09–4.63 Å, and the
average distance was 4.51 Å. The difference between the
maximum and minimum distances (Δdistance) was 2.81 Å,

Fig. 6a–d Best binding poses of the four hits from the covalent docking results. a Compound 1. b Compound 2. c Compound 3. d Compound 4

Fig. 7a–b Time evolution of the distance between the carbonyl group of the epoxyketone and the hydroxyl oxygen of the residue Thr1 in a carfilzomib
(CFZ) and b PR957
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which indicated that a stable binding mode can form (Fig. 7a).
For PR957, the atomic distance was around 2.94–5.88 Å, and
the average distance was 4.67 Å. Δdistance was 2.94 Å
(Fig. 7b). The similar performances of CFZ and PR957 indi-
cated a stable binding model environment for the formation of
the covalent bond. Thus, these distances can be used as
references for the hits.

The distance between the carbonyl group and the hydroxyl
oxygen was also monitored during the 10-ns MD simulations
of the hits.

Due to its rigid structure, the atomic distance (2.90–
5.08 Å), the average distance (3.30 Å), and Δdistance

(2.18 Å) of compound 3 (Fig. 8c) were all shorter than those
of CFZ and PR957, indicating a relatively stable binding
mode. For compound 2, the atomic distance was around
4.11–7.60 Å and the average distance was 5.24 Å (Fig. 8b).
The maximum distance and Δdistance (3.48 Å) appear to be a
bit longer than those in CFZ and PR957. However, the stable
average distance was 4.94 Å, with a small Δdistance (2.14 Å)
observed in the last 5.7 ns, similar to the values observed for

Fig. 8a–d Time evolution of the distance between the carbonyl group of the epoxyketone and the hydroxyl oxygen of the residue Thr1 in a compound 1,
b compound 2, c compound 3, d compound 4 (the corresponding distances in CFZ and PR957 are also plotted for reference purposes)

Fig. 9 Average structure of
compound 1 covalently bonded to
the residue Thr1 of the 20S
proteasome obtained from 10-ns
MD
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CFZ and PR957. The atomic distances of compound 1 (3.10–
9.23 Å, Fig. 8a) and compound 4 (3.16–10.24 Å, Fig. 8d)
fluctuated greatly. Both of these compounds are highly flexi-
ble and thus more likely to flip, indicating a reduced proba-
bility of covalently bonding to the residue Thr1.

The MD simulations for noncovalent docking complexes
reveal that the docking complexes of compound 2 and com-
pound 3 maintain high conformational stability as well as
short atomic distances for covalent binding. Moreover, MD
simulations show that highly flexible compounds such as
compound 1 and compound 4 are easy to flip, causing energy
loss and reducing the chance of covalent binding.

Molecular dynamics simulations for covalent docking
complexes

Ten-nanosecond simulations were performed for compounds
covalently bonded to the 20S proteasome to provide insight
into their binding affinities and interaction patterns. The
RMSD values for all backbones and compounds remained
below 4 Å and 3 Å, respectively, and all RMSD variations
were stable after 2.5-ns simulations. All of the variations in the
total potential energy were less than 900 kcal mol-1 (see

Figs. S8–S9 in the ESM). These findings verify that all four
compounds remain stable across the MD simulations.

The average complex structures are shown in Figs. 9–12,
and they are slightly different from the covalent docking
complexes. Hydrogen bonds were observed between com-
pound 2 and the residues Thr21, Gly47, Ala49, and Asp125

(Fig. 10). This binding mode favors all hydrogen bonds be-
tween the co-crystallized ligand (PR957) and the active pocket
of the β5 subunit in 3UNB (see Fig. S3a in the ESM),
indicating a similar covalent binding model. Compound 3
forms a hydrogen bond with the residue Tyr107 instead of
Gly47 and Ala49 (Fig. 11). However, its rigid structure en-
hances its stability, leading to low RMSD variations during
the 10-nsMD simulation (see Fig. S8 in the ESM). The results
suggest that compounds 2 and 3 may exhibit high binding
affinities towards the 20S proteasome due to favorable
interactions.

Compound 1 has only one hydrogen bond with the binding
pocket, and compound 4 interacts with the 20S proteasome by
reacting with Met45 and Gln131. Both of these compounds are
highly flexible and less stable than compounds 2 and 3 ac-
cording to the RMSD variations (see Fig. S8 in the ESM).
This result corresponds well to the findings obtained fromMD

Fig. 10 Average structure of
compound 2 covalently bonded to
the residue Thr1 of the 20S
proteasome obtained from 10-ns
MD

Fig. 11 Average structure of
compound 3 covalently bonded to
the residue Thr1 of the 20S
proteasome obtained from 10-ns
MD
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simulations of the noncovalent complex: compounds 2 and 3
showed constant distances from the residue Thr1, similar to
the control PIs. Meanwhile, compounds 1 and 4, which
showed fluctuating distances from the residue Thr1, may find
it difficult to form covalent bonds with the residue Thr1 of the
proteasome. Futhermore, the results ofMD simulations for the
noncovalent complex showed that the monitored distances
were stable for the control PIs CFZ and PR957, and the
average distances were <5 Å, which is close enough to allow
covalent binding.

Further validation can be achieved by combining the re-
sults of the MD simulations of the noncovalent and covalent
complexes to check the stability of the covalent ligands. We
can thus conclude that compounds 2 and 3 may exhibit high
binding affinities and compounds 1 and 4 may exhibit low
binding affinities for the 20S proteasome.

ADME prediction

In addition, we investigated the ADME profiles of the com-
pounds using Qikprop [33]. The results are summarized in
Table 1. The predictions indicate that compound 2 possesses
good drug-like characteristics: good oral absorption, few de-
scriptor values that fall outside the 95 % range of similar
values for known drugs, and no effects on the central nervous
system; on the other hand, CFZ has low oral absorption and
violates the accepted ranges of six descriptor values.

Conclusions

Covalent PIs have proven to be clinically effective, with two
such compounds currently approved by the FDA. Covalent
PIs with novel backbones are a promising approach to reduc-
ing drug resistance and improving ADME properties. As
virtual screening for covalent inhibitors remains a challenge,
we fixed the covalent binding part and screened the

noncovalent binding part to indirectly obtain covalent PIs. In
this study, a linear strategy which combined pharmacophore-
based and docking-based methods was used to screen the
novel noncovalent binding part. Then the resulting com-
pounds were attached to the pre-selected epoxyketone group
to create covalent PIs which were validated by covalent
docking and MD simulation of the noncovalent and covalent
complex. In the end, four potential covalent PIs were found
with new scaffolds and reasonable interactions with the sub-
strate. Among them, compounds 2 and 3 showed constant
distances from the residue Thr1 before covalent binding and
exhibited stable interactions with theβ5 subunit after covalent
binding. Compound 2 exhibited good drug-like characteristics
according to ADME predictions and will be further investi-
gated. This procedure was designed to identify compounds
with a valid covalent warhead which are rarely synthesized,
such as 20S PIs, but studies attempting to find other covalent
compounds with a specific covalent warhead may also benefit
from using this method.
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